Section author: Danielle J. Navarro and David R. Foxcroft

References

Author’s note – I’ve mentioned it before, but I’ll quickly mention it again. This reference list is appallingly incomplete. Please don’t assume that these are the only sources I’ve relied upon. The final version of this book will have a lot more references. And if you see anything clever sounding in this book that doesn’t seem to have a reference, I can absolutely promise you that the idea was someone else’s. This is an introductory textbook: none of the ideas are original. I’ll take responsibility for all the errors, but I can’t take credit for any of the good stuff. Everything smart in this book came from someone else, and they all deserve proper attribution for their excellent work. I just haven’t had the chance to give it to them yet.

Adair, J. G. (1984). The Hawthorne effect: A reconsideration of the methodological artifact. Journal of Applied Psychology, 69(2), 334–345. https://doi.org/10.1037/0021-9010.69.2.334

Agresti, A. (2018). An Introduction to Categorical Data Analysis (3rd ed.). Wiley.

Agresti, A. (2012). Categorical Data Analysis (3rd ed.). Wiley.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1), 17-21. https://doi.org/10.2307/2682899

Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from berkeley. Science, 187(4175), 398–404. https://doi.org/10.1126/science.187.4175.398

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40(3–4), 318–335. https://doi.org/10.1093/biomet/40.3-4.318

Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71(356), 791–799. https://doi.org/10.1080/01621459.1976.10480949

Box, J. F. (1987). Guinness, Gosset, Fisher, and small samples. Statistical Science, 2(1), 45–52. https://doi.org/10.1214/ss/1177013437

Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Association, 69(346), 364–367. https://doi.org/10.1080/01621459.1974.10482955

Campbell, D. T., & Stanley, J. C. (1963). Experimental and Quasi-Experimental Designs for Research. Houghton Mifflin.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

Cochran, W. G. (1954). The chi-squared test of goodness of fit. The Annals of Mathematical Statistics, 23(3), 315–345. https://doi.org/10.1214/aoms/1177729380

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum. https://doi.org/10.4324/9780203771587

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press.

Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56(293), 52–64. https://doi.org/10.1080/01621459.1961.10482090

Ellis, P. D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press. https://doi.org/10.1017/CBO9780511761676

Ellman, M. (2002). Soviet repression statistics: Some comments. Europe-Asia Studies, 54(7), 1151–1172. https://doi.org/10.1080/0966813022000017177

Evans, J. S. B. T., Barston, J. L., & Pollard, P. (1983). On the conflict between logic and belief in syllogistic reasoning. Memory & Cognition, 11(3), 295–306. https://doi.org/10.3758/BF03196976

Evans, M., Hastings, N., & Peacock, B. (2011). Statistical Distributions (3rd ed). Wiley. https://doi.org/10.1002/9780470627242

Everitt, B. S. (1996). Making Sense of Statistics in Psychology. A Second-Level Course. Oxford University Press.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272

Fisher, R. A. (1922a). On the interpretation of chi-squared from contingency tables, and the calculation of p. Journal of the Royal Statistical Society, 85(1), 87–94. https://doi.org/10.2307/2340521

Fisher, R. A. (1922b). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 309–368. https://doi.org/10.1098/rsta.1922.0009

Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

Fox, J., Weisberg, S. (2011). An R Companion to Applied Regression (2nd ed.). Sage.

Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60(4), 328–331. https://doi.org/10.1198/000313006X152649

Gelman, A., & Loken, E. (2014). The statistical crisis in science. American Scientist, 102(6), 460. https://doi.org/10.1511/2014.111.460

Geschwind, N. (1972). Language and the brain. Scientific American, 226(4), 76-83. https://www.jstor.org/stable/24927318

Hays, W. L. (1994). Statistics (5th ed.). Harcourt Brace.

Hedges, L. V. (1981). Distribution theory for glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588

Hedges, L. V. & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Academic Press. https://doi.org/10.1016/C2009-0-03396-0

Hewitt, A. K., Foxcroft, D. R., & MacDonald, J. (2004). Multitrait-multimethod confirmatory factor analysis of the attributional style questionnaire. Personality and Individual Differences, 37(7), 1483–1491. https://doi.org/10.1016/j.paid.2004.02.005

Hogg, R. V., McKean, J. V., Craig, A. T. (2005). Introduction to Mathematical Statistics (6th ed.). Pearson.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70. https://www.jstor.org/stable/4615733

Hothersall, D. (2004). History of Psychology. McGraw-Hill.

Hróbjartsson, A., & Gøtzsche, P. C. (2010). Placebo interventions for all clinical conditions. The Cochrane Database of Systematic Reviews, 1, CD003974. https://doi.org/10.1002/14651858.CD003974.pub3

Hsu, J. C. (1996). Multiple Comparisons: Theory and Methods. Chapman and Hall. https://doi.org/10.1201/b15074

Ioannidis, J. P. A. (2005). Why most published research findings are false. CHANCE, 18(4), 40–47. https://doi.org/10.1080/09332480.2005.10722754

Jeffreys, H. (1961). The Theory of Probability (3rd ed.). Clarendon Press.

Johnson, V. E. (2013). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences, 110(48), 19313–19317. https://doi.org/10.1073/pnas.1313476110

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80(4), 237–251. https://doi.org/10.1037/h0034747

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572

Keynes, J. M. (1923). A tract on monetary reform. Macmillan and Company.

Kruschke, J. K. (2015). Doing Bayesian data analysis: A tutorial with R and BUGS. Academic Press. https://www.sciencedirect.com/book/9780124058880

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441

Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. PLoS ONE, 9(9), e105825. https://doi.org/10.1371/journal.pone.0105825

Larntz, K. (1978). Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics. Journal of the American Statistical Association, 73(362), 253–263. https://doi.org/10.1080/01621459.1978.10481567

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.

Lehmann, E. L. (2011). Fisher, Neyman, and the Creation of Classical Statistics. Springer. https://doi.org/10.1007/978-1-4419-9500-1

Levene, H. (1960). Robust tests for equality of variances. In I. Olkin et al. (ed.) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford University Press.

McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. Psychological Methods, 11(4), 386–401. https://doi.org/10.1037/1082-989X.11.4.386

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2), 153–157. https://doi.org/10.1007/BF02295996

Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2), 103–115. https://doi.org/10.1086/288135

Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157–175. https://doi.org/10.1080/14786440009463897

Peterson, C., & Seligman, M. E. (1984). Causal explanations as a risk factor for depression: Theory and evidence. Psychological Review, 91(3), 347–374. https://doi.org/10.1037/0033-295X.91.3.347

Pfungst, O. (1911). Clever Hans (The horse of Mr. von Osten): A contribution to experimental animal and human psychology. Henry Holt.

Rosenthal, R. (1966). Experimenter effects in behavioral research. New York: Appleton.

Sahai, H. & Ageel, M. I. (2000). The Analysis of Variance: Fixed, Random and Mixed Models. Springer. https://doi.org/10.1007/978-1-4612-1344-4

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46(1), 561–584. https://doi.org/10.1146/annurev.ps.46.020195.003021

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (Complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591

Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). W. H. Freeman.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680. https://doi.org/10.1126/science.103.2684.677

Stigler, S. M. (2000). The history of statistics: The measurement of uncertainty before 1900 (8th ed.). Harvard University Press.

Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25. https://doi.org/10.2307/2331554

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124

Welch, B. L. (1947). The generalization of “Student’s” problem when several different population variances are involved. Biometrika, 34(1/2), 28-35. https://doi.org/10.2307/2332510

Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38(3–4), 330–336. https://doi.org/10.1093/biomet/38.3-4.330

Wilkinson, L. (2006). The grammar of graphics (2nd ed.). Springer. https://doi.org/10.1007/0-387-28695-0

Yates, F. (1934). Contingency tables involving small numbers and the chi-squared test. Supplement to the Journal of the Royal Statistical Society, 1(2), 217–235. https://doi.org/10.2307/2983604